To content

The machining division represents a technologically oriented research focus at ISF. It deals with scientific questions concerning the development, design and optimisation of tools and processes in the field of machining processes with a geometrically defined cutting edge. The range of activities includes fundamental research and industrial research and development as well as contract research and technological consulting. The objective is to develop application-oriented solutions for challenges in production technology in cooperation with other research institutions and in direct collaboration with partners from industry.

In terms of content, the department focuses on conventional cutting processes with geometrically defined cutting edge, such as drilling, turning or milling, followed by special processes derived from these, such as deep hole drilling, reaming or threading. The main fields of activity are the development, application qualification and efficiency increase of processes and tools as well as the machining of special materials. In this field, current analyses focus on lightweight construction materials, titanium and nickel-based alloys, composites, graded materials, fibre-reinforced plastics, intermetallic compounds and steels that are challenging to machine. The transfer of research results into practice is often carried out based on component-specific machining tests.

In addition to increasing process understanding and productivity, the focus also is on environmentally friendly as well as resource- and energy-efficient design of machining operations. The performance of experimental work with the help of the institute's extensive mechanical and metrological equipment is supplemented by the use of modern modelling and simulation possibilities. Simulations using the finite element method and metallographic preparation are both used to characterise process-related component changes, to deepen the understanding of the process, and to derive causal relationships in the process environment. A further focus is the efficient use of cooling lubricants in production. In order to understand the interactions between machining process and fluid and, based on this, to discover potential for improvement, both methods of experimental fluid analysis and flow simulation (Computational Fluid Dynamics) are used. The topics of digitalisation, sensor integration and surface functionalisation are gaining increasing importance within this division of the ISF, especially in connection with the influence on the surface boundary zone and thus the lifetime of highly stressed components.

© ISF

Projects

© ISF

Working Group Machining of Innovative Steels

© ISF

Holistic Development and Characterisation of an Efficient Manufacturing of Detachable Joints for Aluminium and Magnesium Lightweight Materials

© ISF

Fundamental Investigations of Micro Single-Lip Deep Hole Drilling of Challenging Drilling Situations

© ISF

Vibration Reduction during Turning and Milling of Lightweight Materials with Tool Holders Produced by Laser Beam Melting

© ISF

Investigations on Optimisation of the Cutting Edge of Twist Drills for the Machining of the High Temperature Resistant Nickel-Base Alloy Inconel 718

© ISF

Investigations on the Influence of Machining and Sulphur Content on the Fatigue Strength of the Quenched and Tempered Steel 42CrMo4+QT

© ISF

Development of a Simulative Model for Analysis of the Effect of Cooling Lubricants in Deep Hole Drilling with Small Diameters with Respect to Chip Formation

© ISF

Geometrically Defined Surface Structuring for the Form-Locked Bonding of Thermal Sprayed Coatings

© ISF

Efficient Modelling of Chip Formation in Orthogonal Cutting Based on Isogeometric Analysis and Modern Methods for Material Characterisation

© ISF

Process-Integrated Measuring and Control System for the Determination and Reliable Generation of Functionally Relevant Properties in Surface Edge Zones during BTA Deep Hole Drilling

© ISF

Fundamental Investigations on the Frictional Contact in the Working Zone in Machining Processes

© ISF

Modelling of the Cooling Lubricant Distribution during Single-Lip Deep Drilling with Consideration of Chip Transport by Means of CFD and SPH/DEM Simulation for Tool and Process Optimisation

© ISF

Research and Development of a Mechatronic Tool System fort he Compensation of Straightness Deviation in BTA Deep Hole Drilling

© ISF

Lightweight and vibration reduced hybrid FRP-metal drill tubes with structure-integrated sensor technology for BTA deep hole drilling processes

© ISF

Restriction of the Chip Thickness Deviations for Stabilising the Chip Formation of High Strength Metals

© ISF

SPP 2231 FluSimPro - Coupled mechanical and fluid dynamic simulation methods to realize efficient production processes

© ISF

Simulation and optimisation of the coolant flow to reduce thermal tool load during discontinuous drilling of Inconel 718

Abbildung eines BTA-Tiefbohrprozesses im Schnitt (Firma botek) © botek

Tool and Process Optimization for efficient Ejector Deep-Hole Drilling-Processes using Smoothed Particle Hydrodynamics (SPH)

© ISF

SPP 2231 FLUSIMPRO: Fully coupled fluidstructure-contact simulations to understand the processes in the contact zones during lubricatedorthogonal cutting

© ISF

Fundamental investigations on the development of a single-phase CO2-lubricant solution to support deep-hole drilling processes for difficult to cut materials by using a cryogenic CO2 snow-lubricant jet

© ISF

Development and implementation of a concept for the use of a low temperature emulsion in the drilling of Inconel 718

To top of page

Calendar

To event list

Location & approach

From A1

Take exit Kreuz Dort­mund/Unna to merge onto A44 toward Dort­mund, which changes into the B1. Exit Dort­mund-Dorstfeld toward Universität (onward see map).

From A 45

Exit Dort­mund-Eichlinghofen toward Universität (onward see map).

Alternatively, you can calculate the route here: Google Maps.

 

Arrival by Deutsche Bahn to Dort­mund or Bochum central station.

From Dort­mund central station, take the S1 city train in the direction of Düsseldorf to the "Dort­mund Universität" station (7 minutes journey time).

From Bochum central station, take the S1 city train in the direction of Dort­mund to the "Dort­mund Universität" station (14 minutes journey time).

The city train runs regularly every 20 minutes in both directions.  From the city train station, take the Skytrain (S-Universität stop) to the Campus Süd stop (1 stop, runs every 10 minutes).

From Dort­mund Airport

By taxi to TU Dort­mund University, Campus South (approx. 20 min and 30 €, see  Map)

From Düsseldorf Airport

Take the city train S1 in the direction of Dort­mund to the "Dort­mund-Universität" station (approx. 60 min). From here, take the Skytrain in the direction of Campus South or Eichlinghofen (runs every 10 minutes and takes approx. 3 min.).

 

The H-Bahn is one of the hallmarks of TU Dort­mund Uni­ver­sity. There are two stations on North Campus. One (“Dort­mund Uni­ver­si­tät S”) is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the “Technologiepark” and (via South Campus) Eichlinghofen. The other station is located at the dining hall at North Campus and offers a direct connection to South Campus every five minutes.

 

The facilities of TU Dort­mund Uni­ver­sity are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the uni­ver­si­ty are located in the adjacent “Technologiepark”.

Site Map of TU Dort­mund Uni­ver­sity (Second Page in English).