Simulation and Process Design
The RG Simulation and Process Design focuses on the simulation-based analysis and optimisation of NC machining processes with defined and undefined cutting edges (Fig.).
Basic investigations, e.g. the machining of hardened high-speed steel, are complemented by the development of innovative processes for structuring freeform surfaces using milling and grinding processes as well as the analysis of additive and subtractive process chains.
In cooperation with the RG “Virtual Machining” at the Chair of Software Engineering, one of the main research topics is the development of process simulation systems for the analysis and optimisation of machining processes. Regarding for example the simultaneous multi-axis micro- and macromachining of complex structures, e.g. for the mould and die production or the aircraft industry, a simulation system for the analysis of the changing engagement conditions during the NC milling of complex free formed surfaces and the resulting effects is developed. For instance, the loads on the milling tool, complex vibration effects, thermomechanical deformations, and tool wear are investigated in various research works. The modelling and analysis of regenerative vibrations resulting from the interaction of the machining process and the dynamic behaviour of the tool-workpiece-machine-system is one of the main research areas. In addition to the milling simulation, models for grinding and honing are developed to predict the resulting surface topographies.
In conclusion, the potential of process simulations, whose application area comprises detailed analysis of the machining process at the cutting edge, the design of fixture systems and machine tool concepts, and the utilisation during the factory planning process, is investigated in different projects of fundamental research and industry-related cooperation.