To content

Fundamental investigations on stabilizing damping effects in milling processes by using functionally structured peripheral cutting edges

Dynamic effects, such as regenerative chatter, often limit the productivity of machining processes. There are five techniques to influence process dynamics and stability: maximizing the stiffness of the production system, maximizing the structural damping of the production system, optimizing the process parameters, maximizing the process damping and disturbing the regenerative effect. Increasing the stiffness or structural damping of a production system is a major challenge in the design of machine tools and is associated with high costs. The optimal design and parameterization of a machining process and optimal use of process damping effects require a detailed knowledge of process-specific dynamic properties of the production system, other process variables and extensive expert knowledge in the field of process dynamics. The disturbance of the regenerative effect is largely independent of the framework conditions regarding the production system and process. Thus, this method is particularly interesting in terms of a universally applicable strategy for increasing productivity.

The presented project approach intends to dampen regenerative chatter vibrations during milling by using functionally structured peripheral cutting edges. These structures, which are applied on the flank face, are supposed to counteract dynamic deflections by interacting with the workpiece material and to efficiently dampen the process due to the generation of dissipative effects, e.g., as a result of increased friction. In experimental investigations the process stabilizing potential of a defined functional surface structuring was demonstrated by conducting orthogonal cuts as a suitable analogy setup with prepared cutting elements made of HSS. By using a specifically compliant tool system, the measured deflections of the tool could be used to evaluate the applied structures. The results show that the use of functionally structured flank faces significantly influences process-related damping effects, indicating a considerable potential for process stabilization. The aim of the project initiative is the application of structural design on milling tools for efficient damping of milling processes. For this purpose, suitable experimental and simulative testing environments are to be developed, which enable fundamental research on the causal relationships between structural designs and process dynamics. This is essential for the transfer of effective structural variants to milling tools. In addition to finite element analyses, the use of a geometric physically-based simulation system (GPS) for machining processes will be a central aspect. An adaptation of the process model of the GPS for the simulation of damping effects during milling is necessary, as shown by simulation experiments, in order to develop a simulation-based optimization procedure for the structural design applied on milling tools.

Darstellung der Effekte beim Projekt und Einfluss der Strukturierung © ISF


To event list

Location & approach

From A1

Take exit Kreuz Dortmund/Unna to merge onto A44 toward Dortmund, which changes into the B1. Exit Dortmund-Dorstfeld toward Universität (onward see map).

From A 45

Exit Dortmund-Eichlinghofen toward Universität (onward see map).

Alternatively, you can calculate the route here: Google Maps.


Arrival by Deutsche Bahn to Dortmund or Bochum central station.

From Dortmund central station, take the S1 city train in the direction of Düsseldorf to the "Dortmund Universität" station (7 minutes journey time).

From Bochum central station, take the S1 city train in the direction of Dortmund to the "Dortmund Universität" station (14 minutes journey time).

The city train runs regularly every 20 minutes in both directions.  From the city train station, take the Skytrain (S-Universität stop) to the Campus Süd stop (1 stop, runs every 10 minutes).

From Dort­mund Airport

By taxi to TU Dortmund University, Campus South (approx. 20 min and 30 €, see  Map)

From Düsseldorf Airport

Take the city train S1 in the direction of Dortmund to the "Dortmund-Universität" station (approx. 60 min). From here, take the Skytrain in the direction of Campus South or Eichlinghofen (runs every 10 minutes and takes approx. 3 min.).


The H-Bahn is one of the hallmarks of TU Dort­mund Uni­ver­sity. There are two stations on North Campus. One (“Dort­mund Uni­ver­si­tät S”) is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the “Technologiepark” and (via South Campus) Eichlinghofen. The other station is located at the dining hall at North Campus and offers a direct connection to South Campus every five minutes.


The facilities of TU Dort­mund Uni­ver­sity are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the uni­ver­si­ty are located in the adjacent “Technologiepark”.

Site Map of TU Dort­mund Uni­ver­sity (Second Page in English).